Simple Extensible Programming through
Precisely-Typed Open Recursion

Andong Fan
The Hong Kong University of Science and Technology
Hong Kong, China

Abstract

In this abstract, we show that a small extension to the MLscript
programming language gives a simple solution to the Ex-
pression Problem through precisely typed open recursion.

CCS Concepts: - Software and its engineering — Object
oriented languages.

Keywords: modularity, union types, open recursion

ACM Reference Format:

Andong Fan. 2022. Simple Extensible Programming through Precisely-
Typed Open Recursion. In Companion Proceedings of the 2022 ACM
SIGPLAN International Conference on Systems, Programming, Lan-
guages, and Applications: Software for Humanity (SPLASH Compan-
ion °22), December 5-10, 2022, Auckland, New Zealand. ACM, New
York, NY, USA, 3 pages. https://doi.org/10.1145/3563768.3563951

1 The Expression Problem in MLscript

Consider the following motivating MLscript! [7] example, a
minimal expression language that we will extend in several
directions. We start by declaring expression constructors:
class Lit(value: Int)
class Add(lhs, rhs)
Note that the parameter types of Add are unspecified. Their
ability to accept subexpressions of arbitrary types will be
crucial to the extensibility of our approach, as we shall see.

trait EvalBase {

eval: (Lit | Add('a, 'a) as 'a) — Int
fun eval(e) = if e is

Lit(n) then n

Add (lhs, rhs) then

this.eval(lhs) + this.eval(rhs) }

IMLscript is a new programming language currently being developed at
HKUST, available online at https://github.com/hkust-taco/mlscript/.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
SPLASH Companion °22, December 5-10, 2022, Auckland, New Zealand

© 2022 Copyright held by the owner/author(s). Publication rights licensed
to ACM.

ACM ISBN 978-1-4503-9901-2/22/12...$15.00
https://doi.org/10.1145/3563768.3563951

54

Here we define an EvalBase trait with an instance-matching

method eval implementing expression evaluation. The type

form T as 'a (which has least precedence, so here Tis Lit |

Add('a, 'a))is a concise way of expressing recursive types;

in negative positions, it is equivalent to 'a where 'a <: T.
Now consider extending the code for pretty-printing:
trait PrettyBase {

print: (Lit | Add('a, 'a) as 'a) — Str
fun print(e) = if e is
Lit(n) then toString(n)
Add(lhs, rhs) then

this.print(lhs) ++ "+" ++ this.print(rhs) }

Next, consider another direction of code extension — defining
a new expression constructor Neg:

class Neg(expr)

We then extend EvalBase and PrettyBase correspondingly:
trait EvalDerived extends EvalBase {
override eval(e) =
if e is Neg(d) then @ - this.eval(d)
else super.eval(e) }

trait PrettyDerived extends PrettyBase {
override print(e) =
if e is Neg(d) then
"-(" ++ this.print(d) ++ ")"

else super.print(e) }
The overriding methods eval and print implement eval-
uation and pretty-printing for negations, calling the base
implementation for other expression types. Finally, we try
to compose everything together:

val Lang = new EvalDerived with PrettyDerived

This may seem legitimate, but unfortunately it does not really
work! For example, while Lang.print (Neg(Lit(1))) type
checks, the following does not:
Lang.print (Add(Neg(Lit (1)), Lit(2)))

We get an error saying that print as declared in PrettyBase
expects an argument of type Lit | Add('a, 'a) but receives
Neg(Lit (1)) instead. This is because MLscript infers the
following insufficiently refined type for the overridden print
definition of PrettyDerived:

print: (Neg('b) | (Lit | Add('a,'a) as 'a) as 'b) — Str

Notice that the recursive type variable 'a only includes con-
structors Add and Lit. The refinement is only done on the
outermost level of expressions: it is a shallow refinement,
while we need a deep one. Indeed, MLscript has no way of

https://doi.org/10.1145/3563768.3563951
https://github.com/hkust-taco/mlscript/
https://doi.org/10.1145/3563768.3563951

SPLASH Companion ’22, December 5-10, 2022, Auckland, New Zealand

knowing that the print implementation of PrettyBase uses
open recursion and actually handles Neg cases once its re-
cursive calls are overridden — the type annotation of eval
in EvalBase does not tell the full story!

2 Precise Typing of Open Recursion

We copy the syntax of method types with receivers from
Kotlin: type A.(B) — C denotes a function with receiver A
expecting B arguments and returning C. In Kotlin, this is used
for extension methods, but it means something different in
MLscript, where it reflects that in JavaScript, one can extract
methods from classes and pass the receiver explicitly:
class C { val x = 2; fun foo(y) = this.x + y }
mth = C.foo // we have mth: C.(Int) — 1Int
mth.call(new C, 3) // statically type checked
As we shall see, we can also use receiver types to refine the
type signatures of methods in the presence of open recursion.

2.1 Fixing The Motivating Example

We can now fix the motivating example of Section 1, which

only requires small changes in EvalBase and PrettyBase:
// In trait EvalBase:

eval: {eval: 'A — Int}.(Lit | Add('A, 'A)) — Int
// In trait PrettyBase:
print: {print: 'A — Str}.(Lit | Add('A, 'A)) — Str

These signatures refine the implicit this parameter to con-
tain an eval (or print) method accepting any argument of
type variable ' A, which corresponds to the type of subexpres-
sions found in the Add constructor. Crucially, the individual
eval method is not polymorphic in 'A — since 'A occurs
in the receiver part of the method signature, it is consid-
ered quantified at the class level, and not at the method level.
Class-level type variables can be understood as hidden type
parameters which get constrained implicitly, and they are
instantiated upon creation of objects.

By providing these signatures, we effectively open the
types of these recursive functions so that they can later be
refined in subclasses. Notice that these types are no longer
recursive! Indeed, the recursive types only reappear once
we tie the knots upon computing the final method types
associated with each class, as we shall explain next.

Our motivating example now works perfectly, even though
we did not change the definitions of the derived traits.

2.2 Type Checking Open Recursion

After type checking the contents of a class, the MLscript
compiler makes sure that its class-level type variables are
consistent with the receiver refinements used in the class —
otherwise it means the class cannot be instantiated and an
error should be reported. To do this, we simply make sure
that this can be made a subtype of each receiver refinements.
In the case of EvalBase, this means constraining ' A such that
(Lit | Add('A, 'A)) — Int (the eval function type) be a

55

A. Fan

subtype of 'A— Int (its receiver refinement), which results
in the constraint 'A <: Lit | Add('A, 'A), recovering the
original recursive type we had in Section 1.

To type check the print override in PrettyDerived, since
no explicit signature is provided, we first assign an infer-
ence type variable ?p to this.print. Moreover, we assign to
super.print the method type inherited from PrettyBase,
ie., (Lit | Add('A, 'A))— sStr,together with the constraint
this <: {print: 'A— str} from the corresponding receiver
refinement, reducing to ?p <: 'A— str. Taking all these to-
gether, the MLscript compiler infers the following principal
type for print (we omit the details):

print: 'A — Str where 'A <: Neg('A) | Lit | Add('A, 'A)
This is precisely the deeply refined method type we needed to
type check the problematic example in the previous section.

Theoretically, MLscript could always infer receiver type
refinements, making the motivating example work without
any type annotations. We refrain from doing this and even
require that all overridden methods be given explicit type
signatures to mitigate the “fragile base class” problem — it
is better to ask programmers to explicitly specify at which
type a method is expected to be overridden, if any. Moreover,
inferring receiver refinements can be counter-productive, as
it may mask errors in methods definitions and report them
at call sites instead.

2.3 Going Further

Our technique generalizes well to other forms of precisely-
typed extensible programming. Consider an openly-recursive
normalization method that deeply reconstructs expression:

type Exp<E> = Lit | Add(E, E) | Sub(E, E) | Neg(E)

n: {n: 'A —> 'B}.(Exp<'A>) — Exp<'B>
We can override this definition in a subclass to narrow down
the shape of the returned AST:

n: {n: 'A — 'B}.(Exp<'A>) — (Lit | Add('B, 'B) | Neg('B))
an implementation of which would look like:

override norm(e) = if super.norm(e) as ne is

Sub(l, r) then Add(l, Neg(r)) else ne

3 Related Work

There is a sea of work in extensible programming, based on
techniques such as polymorphic variants [3] in OCaml, re-
cursive modules [5] in ML, and new programming paradigms
[1, 6] like Compositional Programming [8]. The polymorphic
variants solution [4] probably comes closest to our MLscript
technique. But in the former, open recursion is implemented
by passing an explicit parameter for the recursive call and
manually tying recursive knots at the end, which is verbose
and less natural. Moreover, polymorphic variants have many
limitations [2], that can be fixed by embracing “proper” im-
plicit subtyping as in MLscript [7]. In particular, we argue
that union types are simpler than row polymorphism, which
tries to imperfectly emulate subtyping through unification.

Simple Extensible Programming through Precisely-Typed Open Recursion

References

[1] Jacques Carette, Oleg Kiselyov, and Chung-chieh Shan. 2009. Finally
Tagless, Partially Evaluated: Tagless Staged Interpreters for Simpler
Typed Languages. J. Funct. Program. 19, 5 (sep 2009), 509-543. https:
//doi.org/10.1017/S0956796809007205

[2] Giuseppe Castagna, Tommaso Petrucciani, and Kim Nguyundefinedn.
2016. Set-Theoretic Types for Polymorphic Variants. SIGPLAN Not. 51,
9 (sep 2016), 378-391. https://doi.org/10.1145/3022670.2951928

[3] Jacques Garrigue. 1998. Programming with polymorphic variants. In In
ACM Workshop on ML.

[4] Jacques Garrigue. 2000. Code reuse through polymorphic variants. In
In Workshop on Foundations of Software Engineering.

[5] Keiko Nakata and Jacques Garrigue. 2006. Recursive Modules for Pro-
gramming. In Proceedings of the Eleventh ACM SIGPLAN International

56

SPLASH Companion ’22, December 5-10, 2022, Auckland, New Zealand

Conference on Functional Programming (Portland, Oregon, USA) (ICFP
'06). Association for Computing Machinery, New York, NY, USA, 74-86.
https://doi.org/10.1145/1159803.1159813

Bruno C. d. S. Oliveira and William R. Cook. 2012. Extensibility for the
Masses: Practical Extensibility with Object Algebras. In Proceedings of
the 26th European Conference on Object-Oriented Programming (Beijing,
China) (ECOOP’12). Springer-Verlag, Berlin, Heidelberg, 2-27. https:
//doi.org/10.1007/978-3-642-31057-7_2

Lionel Parreaux and Chun Yin Chau. 2022. MLstruct: Principal Type
Inference in a Boolean Algebra of Structural Types. Proc. ACM Program.
Lang. 6, OOPSLAZ2, Article 141 (2022). https://doi.org/10.1145/3563304
Weixin Zhang, Yaozhu Sun, and Bruno C. D. S. Oliveira. 2021. Compo-
sitional Programming. ACM Trans. Program. Lang. Syst. 43, 3, Article 9
(sep 2021), 61 pages. https://doi.org/10.1145/3460228

G

=

[7

—

8

=

https://doi.org/10.1017/S0956796809007205
https://doi.org/10.1017/S0956796809007205
https://doi.org/10.1145/3022670.2951928
https://doi.org/10.1145/1159803.1159813
https://doi.org/10.1007/978-3-642-31057-7_2
https://doi.org/10.1007/978-3-642-31057-7_2
https://doi.org/10.1145/3563304
https://doi.org/10.1145/3460228

	Abstract
	1 The Expression Problem in MLscript
	2 Precise Typing of Open Recursion
	2.1 Fixing The Motivating Example
	2.2 Type Checking Open Recursion
	2.3 Going Further

	3 Related Work
	References

